Exercise 3

Use the Laplace transform method to solve the Volterra integral equations:

$$
u(x)=1-\frac{1}{2} x^{2}+\frac{1}{6} \int_{0}^{x}(x-t)^{3} u(t) d t
$$

Solution

The Laplace transform of a function $f(x)$ is defined as

$$
\mathcal{L}\{f(x)\}=F(s)=\int_{0}^{\infty} e^{-s x} f(x) d x
$$

According to the convolution theorem, the product of two Laplace transforms can be expressed as a transformed convolution integral.

$$
F(s) G(s)=\mathcal{L}\left\{\int_{0}^{x} f(x-t) g(t) d t\right\}
$$

Take the Laplace transform of both sides of the integral equation.

$$
\begin{aligned}
\mathcal{L}\{u(x)\} & =\mathcal{L}\left\{1-\frac{1}{2} x^{2}+\frac{1}{6} \int_{0}^{x}(x-t)^{3} u(t) d t\right\} \\
U(s) & =\mathcal{L}\{1\}-\frac{1}{2} \mathcal{L}\left\{x^{2}\right\}+\frac{1}{6} \mathcal{L}\left\{\int_{0}^{x}(x-t)^{3} u(t) d t\right\} \\
& =\mathcal{L}\{1\}-\frac{1}{2} \mathcal{L}\left\{x^{2}\right\}+\frac{1}{6} \mathcal{L}\left\{x^{3}\right\} U(s) \\
& =\frac{1}{s}-\frac{1}{2}\left(\frac{2}{s^{3}}\right)+\frac{1}{6}\left(\frac{6}{s^{4}}\right) U(s) \\
& =\frac{1}{s}-\frac{1}{s^{3}}+\frac{1}{s^{4}} U(s)
\end{aligned}
$$

Solve for $U(s)$.

$$
\begin{aligned}
\left(1-\frac{1}{s^{4}}\right) U(s) & =\frac{1}{s}-\frac{1}{s^{3}} \\
U(s) & =\frac{\frac{1}{s}-\frac{1}{s^{3}}}{1-\frac{1}{s^{4}}} \\
& =\frac{s^{3}-s}{s^{4}-1} \\
& =\frac{s\left(s^{2}-1\right)}{\left(s^{2}+1\right)\left(s^{2}-1\right)} \\
& =\frac{s}{s^{2}+1}
\end{aligned}
$$

Take the inverse Laplace transform of $U(s)$ to get the desired solution.

$$
\begin{aligned}
u(x) & =\mathcal{L}^{-1}\{U(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\} \\
& =\cos x
\end{aligned}
$$

